- Fig. 4. Shift of the librational frequency (cm⁻¹) of NH₄Cl with increasing pressure at 296 K. The values obtained from one-phonon spectra are indicated by the light circles (0) while those obtained from twophonon spectra are shown by the dark circles (0). The "order-disorder" phase transition occurs at 9-10 kbar.
- Fig. 5. Shift of the internal mode frequencies of the NH_4^+ ion in NH_4Cl . . . and NH_4Br with change in nitrogen-halogen distance, d_{N-X} , at 296 K. For the symmetric, hydrogen-stretching mode, v_1 , only the wavenumber observed at 1 bar is indicated.
- Fig. 6. Variation of the librational frequency (cm⁻¹) of NH₄Cl and NH₄Br with lattice constant a₀. In NH₄Cl, values from both one-phonon (light circles, 0) and two-phonon (dark circles, 0) spectra are shown, while those in NH₄Br were all obtained from two-phonon excitation process.
 Fig. 7. Pressure induced frequency variation of the combination bands in
- NH₄Cl and NH₄Br at 296 K. Curves designated as A, B and C represent combination bands: $\nu_2 + \nu_6$, $\nu_4 + \nu_6$ and $\nu_4 - \nu_6$ respectively. Fig. 8. Peaks centered around ν_3 (3150 cm⁻¹ at 1 atm) in NH₄Cl are shown at 5.9 and 22.7 kbar pressure for unpolarized light. Polarization studies at atmospheric pressure show the presence of five peaks with α_{xz} and one with $\alpha_{xx}(\nu_1)$ polarization. These peaks could not be

resolved in the high pressure spectra.

Fig. 9.

Effect of isothermal (296 K) and isobaric (1 atm) "disorder-order" phase transition on the relative Raman intensity of ν_4 (TO) and ν_4 (LO) component in NH_AC1.

1.